Hahn-Banach theorems and subgradients of set-valued maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hahn-Banach theorems and subgradients of set-valued maps

Some new results which generalize the Hahn-Banach theorem from scalar or vector-valued case to set-valued case are obtained. The existence of the Borwein-strong subgradient and Yang-weak subgradient for set-valued maps are also proven. we present a new Lagrange multiplier theorem and a new Sandwich theorem for set-valued maps.

متن کامل

Hahn - Banach theorems

The first point here is that convex sets can be separated by linear functionals. Second, continuous linear functionals on subspaces of a locally convex topological vectorspace have continuous extensions to the whole space. Proofs are for real vectorspaces. The complex versions are corollaries. A crucial corollary is that on locally convex topological vectorspaces continuous linear functionals s...

متن کامل

The Noncommutative Hahn-banach Theorems

The Hahn-Banach theorem in its simplest form asserts that a bounded linear functional defined on a subspace of a Banach space can be extended to a linear functional defined everywhere, without increasing its norm. There is an order-theoretic version of this extension theorem (Theorem 0.1 below) that is often more useful in context. The purpose of these lecture notes is to discuss the noncommuta...

متن کامل

Fixed Point Theorems For Set-Valued Maps

Preface In this thesis we provide an introduction to fixed point theory for set-valued maps. It is not our goal in the present work to give an outline of the status quo of fixed point theory with all its newest achievements, but rather to give a thorough overview of the basic results in this discipline. It then should be possible for the reader to better and easier understand the newest develop...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods of Operations Research

سال: 2005

ISSN: 1432-2994,1432-5217

DOI: 10.1007/s001860400397